Energy Enlightenment Winnaar 2018 Battolyser neemt binnenkort de eerste demonstratie-unit in gebruik. De demonstratie-installatie met een elektrische opslagcapaciteit van vijftien kilowattuur en waterstofproductievermogen van vijftien kilowatt staat klaar om naar de Magnum Centrale te worden verscheept. Daarna verwacht Proton Ventures snel te kunnen opschalen naar installaties van tien megawatt.

Battolyser, een slimme doorontwikkeling van de Edison batterij, neemt binnenkort de eerste demonstratie-installatie in gebruik. De nikkel-ijzerbatterij die Edison in 1901 ontwikkelde had een relatief laag elektrisch opslagvermogen en bij het opladen trad bovendien elektrolyse op. Zodra de batterij verzadigd was, begon hij waterstof te produceren. Hoogleraar Fokko Mulder van de TU Delft zag met name die laatste eigenschap als pluspunt. Gekoppeld aan zonne- of windenergie kan de batterij eerst stroomtekorten opvangen als de productie terugloopt. De geproduceerde waterstof kan zelfs langer worden opgeslagen of ingezet in de industrie.

Om de werking op grotere schaal aan te tonen, vond ontwikkelaar Proton Ventures in Vattenfall de eerste launching customer. Bij Proton Ventures staat nu de eerste demonstratie Battolyser klaar op skids die binnenkort naar de Magnumcentrale in de Eemshaven worden getransporteerd. Ook het voor de elektrolyse demiwater is onderdeel van het systeem.

Opschalen

Hoewel de opslag capaciteit van kilowattuur (stroom) en kilowatt vermogen (waterstofproductie) nog niet heel groot is, wil men snel opschalen. Daar wil men snel mee beginnen, zeker na de kapitaalinjectie van Koolen industries. ‘Zodra de eerste grootschalige Battolyser-oplossing cyclisch is getest op zuiverheid en efficiëntie van waterstof, zullen we opschalen naar installaties tot tien megawatt’, zegt Proton CEO Hans Vrijenhoef. Die installaties verrijzen bij industriële partners, zonneparken en locaties waar elektriciteit van offshore windparken op grote schaal aan land komt. Uiteindelijk zullen we Battolyser-systemen installeren op gigawatt-schaal.’

Uitvinder Fokko Mulder ziet meerdere voordelen van de battolyser vergeleken met alkaline elektrolysers. ‘Conventionele alkaline elektrolysers moeten blijven doorwerken wanneer de elektriciteit te duur is om waterstof te produceren. Het Battolyser-systeem doet dat niet. Het systeem kan direct schakelen tussen volledige waterstofproductie en het ontladen van de batterij. Daardoor kan het systeem overschakelen van elektriciteit-inkoop bij lage prijzen, naar elektriciteitverkoop bij hoge prijzen.’

Industrieel gebruik

Door zijn vermogen om continu waterstof te leveren, is de Battolyser geschikt voor de productie van ammoniak, methanol en andere processen zoals DRI, of directe reductie van ijzer. De continue aanvoer van waterstof is nodig om shutdowns van fabrieken of procesfluctuaties te voorkomen. De huidige technologieën kunnen dit niet, waarmee de Battolyser een essentieel hulpmiddel wordt om de productie van dergelijke grondstoffen groen te maken.

Grote schaal

Voor installaties op grotere schaal zou de Battolyser de voorkeur kunnen krijgen in de energie-transitie, omdat wordt vertrouwd op elektroden gemaakt van nikkel en ijzer, materialen die in de mijnbouw onder eerlijke werkomstandigheden in ruime mate beschikbaar zijn. Daardoor wordt het mogelijk om Battolyser technologie wereldwijd op te schalen.

Volgens Mulder behaalt de Battolyser een uitstekende totale efficiëntie van maximaal tachtig tot negentig procent. ‘En dankzij zijn zeer robuuste en duurzame karakter levert hij energie voor vele jaren, wat ook beter is dan bestaande technologieën.’

 

Gelion’s reinvented Zinc Bromide redox-flow battery wins the Industrial Energy Enlightenmentz Award 2019. The pitch of Gelion’s CEO Rob Fitzpatrick convinced the jury of the election as wel as the audience of the European Industry & Energy Summit that the storage solution has the most impact on the energy transition.

Gelion has transformed the Zinc Bromide redox flow-battery technology into a more conventional stationary architecture. Instead of a pumped battery system with tanks and moving parts, the chemistry can be a self-contained block, like a Lead acid or Alkaline cell. This results in a consumer-friendly package that is much more economical, scalable and maintenance friendly, whilst retaining all the benefits of the Zinc Bromide technology.

Safe storage

During the European Industry & Energy Summit in Amsterdam nominees Climeworks, SoundEnergy and Gelion managed to convince the jury of the contribution of their innovations to the energy transition. Gelion stood out with a storage medium that is inexpensive, efficient and safe.

Jury chairman Rob Kreiter: ‘Gelion is an economical, safe and efficient form of storage supports the industry in the energy transition. Gelion has succeeded in combining the low cost of a flow battery with the ease of use of a fixed battery. The zinc bromide battery is therefor a real Industrial Energy Enlightenment.’

Runner ups

The other participants in the Industrial Energy Enlightenmentz competition Climeworks and SoundEnergy previously convinced the jury of their contribution to the energy transition. Climeworks invented a new, solid sorbent that uses waste heat to recover CO2. Kreiter: ‘Direct Air Capture is one of the solutions to cut down CO2-emissions. The use of a solid sorbent makes the technology economical and environmental more attractive. Especially since residual heat can be used to wash out the CO2. Therefore Antecy/Climeworks is a true Industrial Energy Enlightenment.’

SoundEnergy uses waste heat to cool processes or buildings. Kreiter: ‘The use of soundwaves to produce cold out of waste heat is an original approach that can change the industry. The robustness of the design and high performance makes the THEAC-25 a valuable Industrial Energy Enlightenment.’

We selected three candidates who can all make a difference in the transition to an emission-free industry. Now it’s up to you to select your favorite. Read the background of the innovations below, watch the film and vote for your favourite Industrial Energy Enlightenmentz. At the European Industry & Energy Summit, you can attend the pitch of the candidates. Not yet registered? Then do it quickly.

Antecy / Climeworks – Direct Air Capture CO2

The technology of direct air capture (DAC) is fairly simple: a fan directs an air flow past an adsorbent, after which it is enriched with carbon dioxide. When the adsorbent is saturated, it is heated so that it releases the CO2. Commonly used adsorbents are alkanolamines such as monoethanolamine (MEA), diethanolamine (DEA) and methyl diethanolamine (MDEA).

Antecy developed a solid adsorbent based on potassium bicarbonate, a well-known food additive. The potassium salt, also known as potassium hydrogen carbonate, is very hygroscopic, that is: it attracts and retains water. That quality makes it ideal for adsorbing CO2 out of the air. Even better is the fact that the salt releases it’s load of CO2 at relatively low temperatures.

Robert Rosa, business developer at Antecy, indicates that the main benefits of the solid, non-amine absorbent are lower costs and less degradation. Rosa: “Regeneration of the saturated potassium bicarbonate occurs at temperatures from eighty degrees Celsius. If a Direct Air Capture installation is built near the industry, it can use residual heat for the regeneration process. Or else solar heat would also be an option. Moreover, at that low temperature it is not necessary to actively cool, but the ambient temperature is sufficient. So you save energy on two sides.”

SoundEnergy – thermo-acoustic cooling

The thermo-acoustic heat pump was a great promise for years. Soundenergy is now launching a commercial product that uses the principle to convert residual heat into cooling. The potential in the industry is enormous and the first customers use all ready their residual heat to cool buildings.

CEO of Soundenergy Herbert Berkhout: “The crux of our thermoacoustic heat pump is that there are hardly any rotating parts in it. Simply put, you use a pressure vessel with Argon to which you add heat. Just as a balloon expands when it becomes warm, a pressure difference also occurs in the pressure vessel. The potential of the thermal energy has thus been converted into mechanical energy. Like with a speaker, that energy sets a sound wave in motion.

By constantly allowing the gas to cool through the environment and heating it with residual heat, you strengthen the pulse. We use two cylinders that continue to reinforce each other, creating a feedback loop. Then we use two other cylinders in the Teac-25 that use the acoustic energy to produce cold. In this way the system offers a cooling capacity of 25 kilowatts while only residual heat enters.

Gelion – Reinventing Zinc Bromide Batteries

Gelion has transformed the Zinc Bromide redox flow-battery technology into a more conventional stationary architecture. Instead of a pumped battery system with tanks and moving parts, the chemistry can be a self-contained block, like a Lead acid or Alkaline cell. This results in a consumer-friendly package that is much more economical, scalable and maintenance friendly, whilst retaining all the benefits of the Zinc Bromide technology.

Key to the technology is its ability to fully discharge to 0V: great for deep discharge cycling and energy shifting applications. This attribute greatly improves electrical safety as transport, installation and maintenance can all be performed at no electrical potential. Additionally, this enables the battery to chemically “reset” during a full discharge, resulting in remote maintenance, abuse tolerance and expected long life-time in demanding applications. Gelion’s first product iteration is aimed at the stationary energy storage market, ideally used to store large amounts of surplus renewable energy to firm supply by discharging when required. By varying the battery design, Gelion can alter the Zinc Bromide characteristics for higher power and greater capacitance to service other markets.

Other benefits of Gelion’s Zinc Bromide technology include: high fire safety; abundance of large reserves of active materials; and, ease of recyclability. Fire safety is due to the presence of Bromine, which is commonly used in fire retardant materials. When used in a battery, the cells become virtually fire-proof. Abundance of the active materials, Zinc and Bromine is critical: Zinc is one of the most abundant metals on earth and large amounts of Bromine are contained with brine deposits, such as the Dead Sea. The main materials used in Gelion’s Endure battery are: salts, plastics and carbons. Once discharged, these are all inert, non-toxic and safe, enabling cells to be disassembled via a conventional grinding process and the materials reclaimed as battery feedstock or recycled. Overall, Gelion expects that it’s batteries will be one the safest and easiest to recover at end of life.

We are proud to announce the three candidates of the Industrial Energy Enlightenmentz Award 2019. Antecy, SoundEnergy and Gelion will pitch during the European Industry & Energy Summit 2019 on Tuesday 10 December in Amsterdam. We give you a brief introduction of the technology by which these innovators are going to help the industry to limit their CO2 emissions. Register immediately for the most complete industry and energy conference of the year and vote for your favorite innovation.

Antecy / Climeworks – Direct Air Capture CO2

The technology of direct air capture (DAC) is fairly simple: a fan directs an air flow past an adsorbent, after which it is enriched with carbon dioxide. When the adsorbent is saturated, it is heated so that it releases the CO2. Commonly used adsorbents are alkanolamines such as monoethanolamine (MEA), diethanolamine (DEA) and methyl diethanolamine (MDEA).

Antecy developed a solid adsorbent based on potassium bicarbonate, a well-known food additive. The potassium salt, also known as potassium hydrogen carbonate, is very hygroscopic, that is: it attracts and retains water. That quality makes it ideal for adsorbing CO2 out of the air. Even better is the fact that the salt releases it’s load of CO2 at relatively low temperatures.

Robert Rosa, business developer at Antecy, indicates that the main benefits of the solid, non-amine absorbent are lower costs and less degradation. Rosa: “Regeneration of the saturated potassium bicarbonate occurs at temperatures from eighty degrees Celsius. If a Direct Air Capture installation is built near the industry, it can use residual heat for the regeneration process. Or else solar heat would also be an option. Moreover, at that low temperature it is not necessary to actively cool, but the ambient temperature is sufficient. So you save energy on two sides.”

SoundEnergy – thermo-acoustic cooling

The thermo-acoustic heat pump was a great promise for years. Soundenergy is now launching a commercial product that uses the principle to convert residual heat into cooling. The potential in the industry is enormous and the first customers use all ready their residual heat to cool buildings.

CEO of Soundenergy Herbert Berkhout: “The crux of our thermoacoustic heat pump is that there are hardly any rotating parts in it. Simply put, you use a pressure vessel with Argon to which you add heat. Just as a balloon expands when it becomes warm, a pressure difference also occurs in the pressure vessel. The potential of the thermal energy has thus been converted into mechanical energy. Like with a speaker, that energy sets a sound wave in motion.

By constantly allowing the gas to cool through the environment and heating it with residual heat, you strengthen the pulse. We use two cylinders that continue to reinforce each other, creating a feedback loop. Then we use two other cylinders in the Teac-25 that use the acoustic energy to produce cold. In this way the system offers a cooling capacity of 25 kilowatts while only residual heat enters.

Gelion – Reinventing Zinc Bromide Batteries

Gelion has transformed the Zinc Bromide redox flow-battery technology into a more conventional stationary architecture. Instead of a pumped battery system with tanks and moving parts, the chemistry can be a self-contained block, like a Lead acid or Alkaline cell. This results in a consumer-friendly package that is much more economical, scalable and maintenance friendly, whilst retaining all the benefits of the Zinc Bromide technology.

Key to the technology is its ability to fully discharge to 0V: great for deep discharge cycling and energy shifting applications. This attribute greatly improves electrical safety as transport, installation and maintenance can all be performed at no electrical potential. Additionally, this enables the battery to chemically “reset” during a full discharge, resulting in remote maintenance, abuse tolerance and expected long life-time in demanding applications. Gelion’s first product iteration is aimed at the stationary energy storage market, ideally used to store large amounts of surplus renewable energy to firm supply by discharging when required. By varying the battery design, Gelion can alter the Zinc Bromide characteristics for higher power and greater capacitance to service other markets.

Other benefits of Gelion’s Zinc Bromide technology include: high fire safety; abundance of large reserves of active materials; and, ease of recyclability. Fire safety is due to the presence of Bromine, which is commonly used in fire retardant materials. When used in a battery, the cells become virtually fire-proof. Abundance of the active materials, Zinc and Bromine is critical: Zinc is one of the most abundant metals on earth and large amounts of Bromine are contained with brine deposits, such as the Dead Sea. The main materials used in Gelion’s Endure battery are: salts, plastics and carbons. Once discharged, these are all inert, non-toxic and safe, enabling cells to be disassembled via a conventional grinding process and the materials reclaimed as battery feedstock or recycled. Overall, Gelion expects that it’s batteries will be one the safest and easiest to recover at end of life.

De startup Encontech ontwierp een zeer efficiënte warmte gedreven pomp die al werkt op een warmtebron van zeventig graden Celsius. Hoewel de isobare expansiemotor al langer bestaat, modificeerden de oud Universiteit Twente-onderzoekers Glushenkov en Kronberg de bestaande ontwerpen. De wetenschappers verbeterden niet alleen de efficiency, maar losten ook problemen met afdichting en slijtage op. Encontech is een van de kandidaten voor de Industrial Energy Enlightenmentz-verkiezing  2019. 

Een isobaar proces is een toestandsverandering van een bepaalde hoeveelheid materie waarbij de druk niet verandert, maar een of meer andere grootheden wel. Een voorbeeld hiervan is lucht in een cilinder met een vrij beweegbare zuiger waar warmte aan wordt toegevoerd. Door de temperatuurstijging neemt het volume toe maar de druk niet. Twee voorbeelden van een isobare expansiemotor zijn de Worthington stoompomp en de Bush thermocompressor. Beide motoren stammen nog uit het stoomtijdperk, hebben een zeer eenvoudig en robuust ontwerp en worden nog steeds toegepast.

Isobare expansiemotor

Encontech keek met name naar het ontwerp van de Bush thermocompressor en bracht hier modificaties in aan. Ze gebruikten een algemeen bekend koudemiddel (R134a) en testten de motor met temperaturen tussen de vijftig en negentig graden Celsius die direct langs het warme deel van de motor werd geleid. Dat resulteerde in een zeer stabiele slag met een behoorlijke efficiency. Net als bij veel thermische toepassingen stijgt de efficiency met de temperatuur. Bij een temperatuur van tweehonderd tot zeshonderd graden Celsius zou zelfs een efficiency van twintig tot vijftig procent van de Carnot efficiency mogelijk zijn.

Ontzilten

Patrick Bliek van Encontech legt uit dat de IEE van de inzet van een organic rankine cycle (ORC) kan overnemen als de temperaturen te laag worden. ‘Het voordeel van een IEE is dat de druk constant blijft waardoor het bij het geringste temperatuurverschil al zijn werk kan doen. Dit biedt met name voordelen in opstellingen waar je de pomp direct kan gebruiken voor het verpompen van een medium. We testen de motor bijvoorbeeld nu in Qatar waar we zonnewarmte gebruiken om zeewater te ontzilten. De warmte drijft de pomp aan, die de druk opbouwt  die nodig is voor de omgekeerde osmose. De pomp heeft geen problemen met temperatuurvariaties en gaat in dat geval alleen iets langzamer werken.

Koeling

Maar ook voor de omzetting van warmte in koeling of elektriciteit zou de IEE kunnen worden ingezet. Denk bijvoorbeeld aan diepe aardwarmtebronnen. In de zomer is doorgaans nauwelijks behoefte aan de warmte. Waarom zou je deze dan niet omzetten in koeling of zelfs in stroom? We kunnen de motor ook inzetten bij een constante temperatuur. Dat biedt heel wat mogelijkheden voor het benutten van lage temperatuurbronnen. Maar ook voor het efficiënt omzetten van warmte in stroom of koude,  zelfs op vriestemperatuur.’

Partners

Nu het principe van de motor is bewezen, er is een werkende demonstrator op de UT-campus, zoekt Encontech naar – bij voorkeur Nederlandse – industriële partners die mee willen in de ontwikkeling van specifieke toepassingen. Het apparaat is schaalbaar van enkele kilowatts tot twee a drie megawatt per cilinder, die ook in serie geplaatst kunnen worden. Bliek: ‘Je kunt de expansiemotor inzetten als pomp, compressor of zelfs als aandrijving van schepen of locomotieven en dat in temperatuurranges van zeventig tot zeshonderd graden Celsius. Het lijkt me dat er genoeg toepassingen voor zijn te vinden. We kunnen dat echter niet alleen.’

Industrial Energy Enlightenmentz-verkiezing zoekt innovators

De isobare expansiemotor van Encontech staat op de longlist voor de Industrial Energy Enligthenmentz-verkiezing. Tijdens de Industry & Enery Summit 2019 op 10 en 11 december (Kromhouthal Amsterdam) strijden drie innovators voor de titel Industrial Energy Enlightenment 2019. Lees hier meer over de innovatiewedstrijd en schrijf je voor 1 november in.

The international conference Industry & Energy continues as a summit. The competition of the Industrial Energy Enlightenmentz is still an important part of the program. Are you an innovative startup, energy researcher or inventor with an (almost) ready to market invention that will shake up the industrial and energy world? Please contact us and join the Industrial Energy Enlightenmentz competition.

December 10th and 11th Dutch, Belgian and German industry leaders and energy experts meet in Amsterdam to accelerate the transition to carbon emission free production. This energy transition depends heavily on breakthrough innovations in industrial heat. But also in production, storage and distribution of electrical energy. We are searching for innovations that help industrial energy consumers like the (petro)chemical, steel & metal and food & beverage industry to change into a clean and futureproof business.

Battolyser

Power-to-x-technology, carbon capture and usage, but also new concepts for industrial power management can change the carbon footprint of the industry in the Netherlands, Flanders and North Rhine-Westphalia. Winner of the Industrial Energy Enlightenmentz 2018 Battolyser is a perfect example of a technology that both solves the challenges of the short-term storage of electrical energy and the need for hydrogen in the long term. Fokko Mulder (Battolyser) convinced the jury that his improved Tesla battery could bring wind power closer to the industrial needs.

Now it is your turn. Send us an email with a short description of your invention. We are looking for inventions that just need a little push, we are aiming for technology readiness level 4 to 9. If in doubt, please do not hesitate to send the mail anyway.

Send us information

We expect our contestants to send as much information as possible. The jury will then select the top three candidates. These three finalists get the opportunity to pitch for an audience of industrial leaders during the conference. On top of that we will make a short film of your invention to support your pitch and to raise votes on social media.

 

During the Industry & Energy Congress 2018 Battolyser was declared the winner of the Industrial Energy Enlightenmentz 2018. According to the jury the combination of an efficient battery and an electrolyser that can produce hydrogen and oxygen brings together te best of both worlds. The potential impact of the Battolyser on the sustainable energy system makes it a true Industrial Energy Enlightenment.

The integration of Edison’s nickel-iron battery with robust alkaline electrolyser technology yields an efficient battery and -when fully charged- an electrolyser that can produce hydrogen and oxygen. The hydrogen can be used as chemical feedstock or be stored as fuel for seasonal storage, while the battery provides electricity storage for minutes, up to day and night. Overall energy efficiencies reach 80 to 90 percent. This development from the research group of prof. Fokko Mulder at TU Delft is now taken forward in the start-up Battolyser BV founded by TU Delft, Proton Ventures and Mulder. A first up-scaled battolyser pilot plant is currently being realised next to Nuon’s Magnum powerplant in Eemshaven.

Battolyser competed against Metalot and Qpinch. Innovation platform Metalot has already prepared plans to convert the Uniper coal-fired power station into an iron powder plant. The Belgian startup Qpinch has studied the processes of energy conversion of human cells and mimics them to upgrade industrial residual heat of around 75 degrees Celsius to 230 degrees Celsius.

With the Industrial Energy Enlightenmentz election we want to inspire the industry and energy companies in applying promising innovations. And we want to give a boost to innovations and processes. A professional jury has divided the points for 60 percent, in addition, visitors to Industry&Energy were also allowed to vote (counts for 20 percent) and people could vote via the internet (also counted for 20 percent).

The battle for the Industrial Energy Enlightenment of the year election 2018 is still going on. lthough Battolyser is currently at the top of the internet votes, Metalot follows closely. Qpinch can still use some support. Those who still want to support Battolyser, Metalot or Qpinch can vote until Thursday 10.30 am. So vote now please.

The winner of the Industrial Energy Enlightenmentz 2018 innovation contest is partly determined by you. Three parties compete for the title: Battolyser, Metalot and Qpinch. All three technologies can make an important contribution to a sustainable industry. Of course, only one can run away with the title Industrial Energy Enlightment 2018.

Although Battolyser is currently at the top of the internet votes, Metalot follows closely. Qpinch can still use some support. All three parties would like to receive the title, but they depend on you in particular. The final winner is chosen by both the jury, the public and the internet voters. So, go quickly to the films and pitches of the innovators and choose your own winner

Enlightenmentz are shining examples for a sustainable future. Together they can start the green industrial revolution. Industrial Energy Enlightenmentz have been created to inspire the industry in applying promising innovations that can make their energy consumption more sustainable. And to give innovations and processes a boost. This year Proton Ventures, Metalot and Qpinch are competing for the title. The winner will be announced during the Industry & Energy congress on December 13th in Geleen.

Thursday the three competitors of the Industrial Energy Enlightenmentz election will pitch at the international Industry&Energy conference. You can vote too. Look at the promo videos of Battolyser, Metalot and Qpinch, read about their innovative contribution to a sustainable industry and vote for your favorite.

Enlightenmentz are shining examples for a sustainable future. Together they can start the green industrial revolution. Industrial Energy Enlightenmentz have been created to inspire the industry in applying promising innovations that can make their energy consumption more sustainable. And to give innovations and processes a boost. This year Proton Ventures, Metalot and Qpinch are competing for the title. The winner will be announced during the Industry & Energy congress on December 13th in Geleen.

You can vote until 13 December 10.30 a.m.

Battolyser

The integration of Edison’s nickel-iron battery with robust alkaline electrolyser technology yields an efficient battery and -when fully charged- an electrolyser that can produce hydrogen and oxygen. The hydrogen can be used as chemical feedstock or be stored as fuel for seasonal storage, while the battery provides electricity storage for minutes, up to day and night. Overall energy efficiencies reach 80 to 90 percent. This development from the research group of prof. Fokko Mulder at TU Delft is now taken forward in the start-up Battolyser BV founded by TU Delft, Proton Ventures and Mulder. A first up-scaled battolyser pilot plant is currently being realised next to Nuon’s Magnum powerplant in Eemshaven.

Why should Battolyser win?
The Battolyser can become an important link in the energy transition and support both the energy companies and industry in the optimal use of sustainably generated electricity and hydrogen. Affordable renewable hydrogen is essential for green chemical products like storable artificial fuels, ammonia and for example iron production from metal oxide ores. Hans Vrijenhoef from Proton Ventures thinks that Battolyser more than deserves the title Industrial Energy Enlightenment: ‘The battery and hydrogen production brings together the best of both worlds because it charges, discharges or produces hydrogen perfectly in line with the availability -and costs- of intermittent renewable electricity.’

Metalot

Innovation platform Metalot has already prepared plans to convert the Uniper coal-fired power station into an iron powder plant. First, proof will have to be provided that laboratory tests also work in practice. The researchers are building a pilot installation at the Nyrstar zinc plant in Budel. The great advantage of iron powder is the ability to store sustainable energy for a longer period of time. Long-term energy storage is crucial for the success of the energy transition to sustainable sources. With storage for the long term, when using iron powder, at least much less space is needed than would be the case with hydrogen.

Why should Metalot win?
Prof. dr. Philip de Goey of TU Eindhoven: ‘Metalot offers a clean alternative to coal-fired plants. As a result, the high investments in the new coal-fired plants do not have to be written off more quickly. We can use a large proportion of the existing assets for the production of clean electricity. This is not only working well for CO2 emissions, but also for the balancing of the electricity grid. ‘

Qpinch

The human body is an efficient machine that is very well designed for heat production, storage and transport. The Belgian startup Qpinch has studied these processes well and mimics them to upgrade industrial residual heat of around 75 degrees Celsius to 230 degrees Celsius. Qpinch already tested its technology at Indaver in Antwerp and recently signed a contract with the Austrian chemicals company Borealis to scale up the process.

Why should Qpinch win?
The promising technology is capable of recovering half of the low-value residual heat from energy-intensive consumers. Because it is a chemical process, very little extra energy in the form of electricity is needed for a temperature lift of fifty to one hundred degrees. Scaling up the technology can be a huge boost for CO2 savings in the industry. The collaboration with Borealis alone produces CO2 savings of 2,200 tons per year.

Welke innovatie helpt de industrie probleemloos de energietransitie door te komen? Tijdens de Industrial Energy Enlightenmentz verkiezing gaan we op zoek naar hoopgevende innovaties. Dit jaar strijden Metalot, Proton Ventures en Ineratec om de titel. De winnaar wordt bekendgemaakt tijdens het congres Industry & Energy: When electrons power molecules.

Met de verkiezing willen we de industrie inspireren bij het toepassen van hoopgevende innovaties en willen we de bedrijven die meedoen een duwtje in de rug geven.

Metalot – Solid metal fuels

Metalen kunnen reageren met zuurstof in de lucht om hun energie vrij te maken. Ook zijn metalen zoals ijzer, aluminium en zink niet echt zwaar en niet zeldzaam. IJzer is bijvoorbeeld het op een na meest voorkomende materiaal op aarde. Die metalen zijn niet giftig, reageren redelijk gemakkelijk met lucht en branden op dezelfde manier als methaan. Metalen bevatten zelfs meer energie per volume dan fossiele brandstoffen. Het belangrijkste: brandende metalen geven geen broeikasgassen af, zoals CO2. Op deze manier kunnen metalen worden gebruikt om energie op een duurzame manier op te slaan.

Proton ventures – Battolyzer

Eind 2016 presenteerde de onderzoeksgroep van professor Fokko Mulder aan de TU Delft de succesvolle realisatie van een battolyser op laboratoriumschaal. De battolyser kan op een efficiënte manier elektriciteit opslaan of leveren als een batterij, én water splitsen in waterstof en zuurstof door elektrolyse wanneer de batterij vol is. De realisatie van een eerste battolyser in Eemshaven begin 2019 is een belangrijke mijlpaal voor Nuon in Groningen. Doel van Nuon is om in de toekomst op grote schaal overschotten stroom uit wind en zon voor langere termijn op te kunnen slaan en te recyclen voor elektriciteitsproductie.

Dit nieuwe project bij de Magnum-centrale van Nuon, waarmee direct getest kan worden, is een eerste concrete opschaling naar veel grotere systemen. De geproduceerde waterstof zal worden toegepast voor koeling van de generatoren en vervangt de grijze waterstof die daar momenteel voor wordt gebruikt. Uiteindelijk wil Nuon de geproduceerde waterstof gebruiken als CO2-vrije brandstof voor de gascentrale.

Ineratec – CO2 naar chemicaliën

In het ICO2CHEM-project werken Finse Duitse en Italiaanse bedrijven en onderzoekscentra samen om CO2 om te zetten in chemicaliën. Hiervoor ontwikkelt men een nieuw productieconcept voor de productie van zogenaamde witte oliën en niet-aromatische wassen met een hoog molecuulgewicht. Het Duitse Ineratec combineert hiervoor zijn Reverse Water Gas Shift-reactor (RWGS) met een innovatieve modulaire FischerTropsch-reactor.

De proeffabriek zal CO2 van een biogasopwerkingsfabriek samen met industriële H2a-bijproducten van een chlooralkali-elektrolyse-installatie omzetten in witte oliën en hoogmoleculaire alifatische wassen. De RWGS-stap zet CO2 met H2 om in een synthesegasmengsel (CO + H2). De volgende FT-reactiestap zal het synthesegas in de chemische producten omzetten.

Tijdens het het Industry & Energy congres op 13 december pitchen de drie finalisten. Daarna maken we de winnaar bekend. Deze wordt bepaald door een jury (verdeelt 60 punten), internetstemmen (20 punten) en de bezoekers van het congres (20 punten).